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Chapter 1 - Definitions and Special Graphs

Graph Definitions (1.1)

Basic Definitions

A graph  is a tuple  consisting of a nonempty and finite set of vertices  and a
finite (multi)set of edges  that connect the vertices.

A graph of order  is a graph with  vertices; a graph of size  has  edges.

ADV  The set of all graphs is denoted ; the set  is the set of all graphs with  vertices.

A simple graph is a graph that doesn't contain loops or multiple edges, i.e. the edge-set is not a
multiset. A multigraph may contain such things.

Two vertices are adjacent if they are connected by an edge; the edge is incident to both vertices.
Likewise, two edges are adjacent if they are incident to the same vertex

Degree

The degree  of vertex  is the number of edges incident to .

The degree sequence of a graph  is the non-decreasing sequence formed of the degrees of the
vertices  of .

Isomorphism

 denotes the vertex-set of  and  denotes the edge-set of 

The edge joining vertices  and  is denoted  or 

E.g. 

A loop is an edge that points from a vertex to itself

Aside: the adjacency relation over a graph is the relation over the graph's nodes (i.e. a subset of
) that describes which nodes are adjacent. An adjacency relation in general is any

relation that is irreflexive and symmetric.

Vertex  is an isolated vertex if 

Vertex  is an end-vertex of 

The maximum of this sequence is denoted , and the minimum is denoted 
By convention, a loop counts as  edges when counting degree



Two graphs  and  are isomorphic (notated ) if they have the same positions of the edges
and vertices.

Isomorphic graphs have the same degree sequence, and for any pair of "equivalent" nodes between
isomorphic graphs, the multiset of degrees of adjacent nodes are the same.

A graph with labelled vertices is a labelled graph. Labelling two otherwise isomorphic graphs may
break the isomorphism, as some vertices are no longer interchangeable.

Connectivity

A graph is connected if every vertex can be reached from every other vertex; otherwise, the graph is
disconnected.

We can contract edge  of graph  by removing the edge and joining the two vertices it
connects, i.e. for edge , 

Subgraphs

A subgraph  of graph  is a "subset" of , specifically  and 

Since subgraphs can be found by removing edges and/or vertices from the "supergraph", they can be
expressed as set differences between the supergraph and a set of vertices , set of edges ,
or another subgraph .

A clique  is subgraph of graph  that is a complete graph, i.e.  for some . The
size of the largest clique in  is denoted .

Formally,  and  are isomorphic if there exists an isomorphism  between their
vertex sets that preserves the graph's adjacency relation, i.e.

Trivially, the identity function  is an isomorphism, i.e. 

Isomorphism  is an equivalence relation
An automorphism is an isomorphism from a graph to itself

E.g. 

Each "part" of a disconnected graph is called a component

A spanning subgraph  of  has the same nodes as , i.e. 
The empty graph  is trivially a subgraph of any graph

A subgraph  of  is induced by the set of vertices  if  and 
consist of the edges of  with both endpoints in . In this case, we use the notation 
.



Aside: the problem of determining if a graph  has a subgraph isomorphic to another graph  is
known as the subgraph isomorphism problem, and is NP-complete.

Matrix Representations

The adjacency matrix  of a graph  with  vertices is the  matrix whose th
entry is the number of edges joining vertices  and .

The incidence matrix  of a graph  with  vertices and  edges is the  matrix whose th
entry is  if  is incident with edge  and  otherwise.

Aside: there are meanings attributed to "doing linear algebra" on these matrices; this is explored in
Chapter 8: Spectral Graph Theory

Complement

The complement  of graph  has the same vertices as , but every edge in  is not in , and
every edge not in  is in .

A graph  is self-complimentary if it is isomorphic to its own complement, i.e. .

Cartesian Product ADV

The cartesian product  of graphs  and  is defined by

ADV  Lemma 5.19: Subgraph Isomorphism Properties

If  is an isomorphism between graphs  and , then:

For any , if , then the subgraph of  induced by the neighbours of  is
isomorphic to the subgraph  induced by the neighbours of , i.e. 
The subgraph of  induced by the vertices of degree  is isomorphic to the subgraph of

 induced by the vertices of degree 

For any graph , the number of induced subgraphs of  isomorphic to  are equal to the
number of induced subgraphs of  isomorphic to .

Aside: since the adjacency relation over a graph is symmetric, we have 

Aside: each column of  corresponds to a particular edge, where the location of the s determine
which vertices it connects. So, each column will have exactly   entries and   entries.

Formally, if  has  vertices, then  and 

The cartesian product of the vertex sets: 



E.g.  forms a  grid.

ADV  Multigraphs

An undirected multigraph  contains sets of vertices and edges as well as a
incidence function  that describes how many ends of the edge  are incident to
node .

The simplification of a multigraph  can be obtained by (essentially) removing loops and any
"duplicate" edges.

Special Graphs (1.2)

NAME SYMBOL CHARACTERIZATION EDGE COUNT

Null graph A graph without edges (possibly with 
nodes), i.e. 

Complete graph The simple graph where any two vertices 
are adjacent

Cycle graph A connected graph with  vertices where 
each vertex has degree ; the graph 
consists of a single cycle

Path graph Obtained by deleting an edge from 

Wheel graph Obtained by adding vertex to  that is 
connected to every other vertex

-regular graph A graph where every vertex has degree 

Cubic graph A -regular graph, e.g.  and 

Platonic Graph A graph that is a projection of the 5 
platonic solids

not unique

Bipartite Graph A graph that can be coloured such that 
adjacent vertices have different colors

not unique

Complete 
Bipartite Graph

A simple bipartite graph with  white 
vertices and  black vertices, where every 
pair of black and white vertices is 
connected

ADV  Complete 
-partite graph

A graph with  sets of nodes with sizes 

 (so ) where two nodes 

are adjacent iff they lie in different sets

Vertices  and  are adjacent iff either  in  and , or
 in  and 



NAME SYMBOL CHARACTERIZATION EDGE COUNT

-
cube/hypercube

The graph of a (possibly higher) 
dimensional cube; each vertex corresponds 
to an entry in , and adjacent 
vertices are those where one digit is 
different. Alternate expression: 

, for 
dimension 

.

ADV  Circulant (Informal) For a subset , the 
circulant is the graph where nodes 
correspond to the equivalence classes of 
 and the edges are the cycles formed by 
skipping  vertices each time. E.g. 

 is isomorphic to the circle of 
fifths.

ADV   square 
grid graph

Defined by 

ADV  Hamming 
Graph

Defined by . Edges 
describe adjacent ( ) codewords in a 
Hamming code. Math 422 forwshadowing!

ADV  Bipartite Graphs

A bipartition of graph  is an ordered pair of subsets  where

A graph with a bipartition is a bipartite graph.

Preliminary Results (1.3)

 and 
For every edge , both  and  are nonempty, i.e. each edge joins a vertex in

 with a vertex in .

ADV  Properties of Bipartite Graphs

1. Isomorphic graphs are either both or neither bipartite
2. Every subgraph of a bipartite graph is bipartite

3. A cycle graph  is bipartite if and only if  is even

Theorem 2.1.1: Characterization of Bipartite Graphs

A graph  is bipartite if and only if  doesn't contain any cycles of odd degree, i.e. all the cycles
of  are of even degree.

https://en.wikipedia.org/wiki/Circle_of_fifths
https://en.wikipedia.org/wiki/Circle_of_fifths


Graphic Sequences

A graphic sequence is any non-decreasing integer sequence that is the degree sequence of a graph.

Edges and Vertices

Havel/Hakimi Algorithm

We determine whether a non-decreasing sequence  is graphic:

For any ,  is graphic if and only if  is also graphic. So, once we recognize a clearly graphic
(e.g. ) or non-graphic sequence, we may stop.

continuously replace , where  is formed by removing the th term of ,
subtracting  from the (now) last  terms, then re-sorting the sequence if necessary

Conversely, we can use this algorithm to construct a graph with a given degree sequence by
applying the algorithm backwards, i.e. starting with the graph of the "clearly graphic sequence"
and adding nodes with the edges corresponding to adding  to the last  terms in the sequence
Aside: is this transformation linear? I don't think it is, but if so, what is its transformation
matrix?

Lemma 1.3.1

Any simple graph  of order  must have  vertices of the same degree

Proof: If  is a simple graph with  vertices, then their possible degrees are in .
A simple graph cannot have a vertex of degree  and a vertex of degree , since this would
imply multiple edges between a set of nodes. Thus, by the pigeonhole principle, at least two
nodes have the same degree.

Handshaking Lemma

For any graph , the sum of all degrees in a graph is even, i.e. 

Corollary: Every graph  must have an even number of vertices of odd degree

Corollary: The number of edges  of a graph  is defined by 

Proof: each edge involves two vertices, so adding an edge increases the total degree count of the
graph by . Thus, the total degree count of the graph is even.



Types of Problems in Graph Theory (appendix)

Aside: Applications (1.4)

In class, we discussed various applications in the forms of situations that can be interpreted and
treated like graphs:

Proof (Cor. 1): If a graph had an odd number of vertices of odd degree, its total degree
count would also be odd, which violates the handshaking lemma
Proof (Cor. 2): Since each edge increases the total degree count by , the number of edges is
half of the total degree count

Existence problems: can a graph with the following properties exist?
Enumeration problems: how many graphs with the following properties exist?

Optimization Problems: of graphs satisfying given constraints, which one maximizes or
minimizes a particular property (e.g. travelling salesman problem)

Transportation and communication networks

Skeletal structures of chemical compounds
E.g. non-isomorphic configurations of the same atoms and bonds (i.e. a labelled graph)
produce different isomers of the same molecule

Electrical circuits

Information storage (data structures)
Degrees of separation studies



Chapter 2 - Paths, Cycles, and Connectedness

Walks, Paths, Cycles (2.1)

A walk  with length  in a graph  is a sequence of edges of ,
starting at the initial vertex and ending at the final vertex.

A trail is a walk where no edge is repeated.

A path is a trail (and thus also a walk) where no vertices are repeated, with the possible exception of
the initial and final vertices being the same.

A walk, trail, or path is closed if the initial and final vertices are the same.

A cycle is a closed path.

A walk  is supported on a subgraph  of  defined by  and

In a multigraph, the specific edge between two node must be specified
The concatenation  of walks  and  where  is defined
as . We have .

The minimum length walk between vertices  and  in  will be a path between  and 

If a walk exists between vertices  and , then so too does a path

If multiple paths between  and  exist in graph , then  has a cycle

We can also uniquely characterize a cycle as a connected, -regular graph

The girth of graph  is the length of the shortest cycle in .

Theorem 2.1.1: Bipartite  even cycles

A graph  is bipartite if and only if each cycle in  has an even length.

Proof:
: Clearly, an odd cycle cannot be colored with alternating colors
: Pick arbitrary vertex , and color every other vertex in the graph such that if

 is even, vertex  is colored black, otherwise white (this implies  itself is black). We
show that no two adjacent vertices have the same color: let  and  be adjacent, with 
being the last vertex in common between the paths connecting  to each  and . Clearly

 is even, since the path it describes is a cycle and all cycles are assumed
to be even. So, one of  or  is even, and the other is odd. Thus, 



Connectedness (2.2)

A graph  is connected if there is a path between any two vertices in .

Vertex  is reachable from vertex  in graph  if a walk exists between  and .

The distance  between vertices  and  in graph  is the length of the shortest path between
them.

and  are of different parity, so are assigned different colors. So,  and  are
different colors as well.

Lemma 2.3.1

If every vertex of graph  has a degree of at least , i.e. , then  contains a
cycle.

Proof: we consider simple graphs (this is true by definition for non-simple graphs). Consider
building a walk by starting at an arbitrary vertex and picking an adjacent edge that hasn't been
visited. Eventually, we will repeat a vertex; a cycle is formed by the segment of the walk between
the repeated vertices

Alt proof: If  has all vertices of degree at least , then  haven't be a tree since it has no
leaves. Thus, it must have edges.

ADV  Proposition 6.14: Equivalent Connectedness Definitions

The following are equivalent for graph 

1.  is connected
2.  is nonempty, such that for all vertices  and , a -path exists in 

3. There exists a vertex  such that for all , a -path exists

Reachability is an equivalence relation.

The equivalence classes  defined by this equivalence relation correspond to the
components of , of which there are .

The diameter  of graph  is the smallest  such that  for all vertices .

The distance function  is a metric function

Aside: this is equivalent to the distance  and  used in coding theory; this is because
codes can be expressed as graphs where codewords are nodes and edges exists between nodes if
their distance is .



The boundary  of a subset  is the set of edges of  with exactly one end in , i.e.

Bounds on Edge Count

Disconnection and Cuts

Edges

A disconnecting set of connected graph  is a set of edges  whose removal disconnects .

A cutset is a disconnecting set that does not have a proper subset that is also a disconnecting set, i.e.
it is the smallest disconnecting set.

A bridge  is a single edge in graph  whose removal increases the number of components  has, i.e.
.

Iff  is connected, then every non-empty proper subset , the boundary .

Theorem 2.2.1

If  is a simple graph with  vertices,  components, and  edges, then

.

Proof: we prove two facts
1. We prove the lower bound  by induction on :

Base case: :  must be , so we have , as needed

Inductive case: Assume some graph  satisfies . Consider  for some
edge  of . This graph has  vertices,  components (or less), and  edges. By
induction, since  has  edges, it satisfies ,
implying 

2. To get an upper bound on , assume each component is a complete graph. If a graph 
with  vertices and  components has the most edges possible, it has  null vertices and
a complete component with the rest ( ) of the vertices, which implies

 edges.

Corollary 2.2.2

Any simple graph with  vertices and more than  edges must be connected.

Proof: follows directly from theorem 2.1.1  taking .



For connected , we define the edge-connectivity  as the size of the smallest cutset of .

Vertices

A separating set of connected graph  is a set of vertices  whose removal disconnects .

The vertex-connectivity or connectivity  of a graph is the minimum number of vertices that
must be removed to disconnect the graph

Eulerian Graphs (2.3)
A connected graph  is Eulerian if it has an Eulerian trail, which is a closed trail containing every
edge . Recall that a trail doesn't have repeated edges.

A connected graph  is semi-Eulerian if it has a non-closed trail visiting every vertex without
repeating.

So,  is a cutset

An edge  is a bridge if and only if  is not part of any cycles in 

If  is a bridge in , then removing  has two components  and  where 
and .

We clearly have 

A cut-vertex  is a single vertex whose removal disconnects the graph, i.e.  is a *separating
set

We have , since we can achieve  by removing the edges referred to by
; if any of these edges are adjacent, we have .

The edges of a Eulerian graph can be traced out without lifting a pencil, starting and ending at
the same spot.

Theorem 2.3.2: Characterization of Eulerian Graphs

A connected graph  is Eulerian if and only if the degree of every vertex is even.

Proof:
: Clearly, each node in the cycle contributes  to the degree of the node, so the degree

of each node must be even

: We proceed by strong induction on . Base case: clearly, if  or 
, an Eulerian path exists. Inductive case: Assume graph  has Eulerian cycle . 
may be disconnected, but each component still has each node of even degree, so by the
inductive assumption has an Eulerian cycle. We construct the Eulerian cycle in  by



By corollary,  and  is Eulerian for all 

Hamiltonian Graphs (2.4)

travelling along , then completing the Eulerian cycle of each component as we get to it
along . Since any cycle of  clearly is smaller than that of , strong induction holds.

Corollary 2.3.3: Characterization of semi-Eulerian Graphs

A connected graph  is semi-Eulerian if and only if it has exactly  vertices of odd degree. These
will be the the initial and final vertices of the trail.

Proof:
: Each end of path contributes  to the degree of the start and end nodes. So, if the

initial and final vertices are different, then they must each have odd degree.

: If we were to add an edge between the two vertices of odd degree,  would become
Eulerian, with the Eulerian cycle containing that edge. Thus, removing that edge from the
cycle leads to the Eulerian path.

Fleury's Algorithm

For Eulerian or semi-Eulerian graph , the Eulerian trail can be found/generated by

1. Picking a starting node (for semi-Eulerian graphs, one of the nodes of odd degree)

2. Picking a random edge to travel down; only pick a bridge if it is the only choice available
3. Erase each edge as it is traversed



A connected graph  is Hamiltonian if it has a Hamiltonian cycle, which is a cycle that includes
every vertex  exactly once.

A connected graph  is semi-Hamiltonian if it has a (non-closed) path that passes through each
vertex  exactly once.

Bipartite graphs with an odd number of vertices cannot be Hamiltonian because such a Hamiltonian
cycle would need to be odd (Assignment 2).

Aside: A Hamiltonian cycle in a planar graph  corresponds to a partition of the vertices of the dual
graph  into two subsets (namely, the interior and exterior of the cycle) whose induced subgraphs are
both trees (wikipedia)

Optimization Problems and Algorithms (2.5)

Shortest path problem: In a (positive) edge-weighted graph , what is the least expensive
(weighted) path between two given nodes?

Determining whether a graph is Hamiltonian is an NP-complete problem

Hamiltonian graphs don't have "nice" equivalents to the theorems about Eulerian graphs we have
looked at

Theorem 2.4.1: Ore's Theorem

If  is a simple graph with  vertices where  is true for each pair  of
non-adjacent vertices in , then  is Hamiltonian.

This is a sufficient condition, but it is not necessary
Many puzzles can be characterized as finding Hamiltonian cycles, e.g. the Traveller's
Dodecahedron and the Knight's Tour.

The proof is completed by proving that every non-Hamiltonian graph exhibits 

Corollary To Ore's Theorem

A complete bipartite graph is Hamiltonian if and only if it is of the form 

This problem is solved somewhat efficiently ( ) by Dijkstra's Algorithm

Dijkstra's Algorithm

To find the path of least weight between node  all other nodes in weighted graph 

1. Assign cost , since travelling "between" the same node costs nothing

https://en.wikipedia.org/wiki/Dual_graph
https://en.wikipedia.org/wiki/Icosian_game
https://en.wikipedia.org/wiki/Icosian_game
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Ore%27s_theorem


Chinese Postman Problem: In a (positive) edge-weighted graph , what is the least expensive trail
that passes through all of the nodes that starts and ends at the same vertex

Travelling Salesman Problem: In a (positive) edge-weighted complete graph , what is the least
expensive Hamiltonian cycle?

Counting Walks (2.6)

We can use the principle in the inductive step to count paths for small  without having to perform
matrix multiplication.

2. Define temporary costs of the nodes adjacent to  as the weights of the edge connecting
them to 

3. The smallest temporary cost becomes permanent, and the process repeats on the adjacent
node of smallest cost that hasn't yet been visited (in the future, the other temporary values
may be decreased)

4. Repeat this process until all nodes have permanent values. At this point, we find a spanning
tree that shows the shortest paths from  to every other vertex

If  is Eulerian, then we find the Eulerian path; if  is semi-Eulerian, we can use Djikstra's
Algorithm.

If neither of the above are true, the problem is more difficult but a  solution is known

This problem is NP-complete.

Theorem 2.6.1: Matrix power  walk counting

If  is an adjacency matrix for graph , then the th entry of  denotes the number of
distinct walks from vertex  to vertex  in .

Proof: We proceed by induction on  (the length of the walk)
Base case: : By the definition of the adjacency matrix,  already indicates this
number.
Inductive case: Assume the th entry of  is the number of -step walks between vertices 
and . A -step walk from vertices  to  can be partitioned into two parts: the -step
walk to a vertex  adjacent to vertex , then the -step walk from that vertex  to vertex 
itself. By the induction assumption, the th and th entries of  give the number of
walks for each part of the  walk, respectively. So, by the addition and multiplication

principles, the total number of walks is , which is  by the definition of

matrix multiplication.



Corollary 2.6.2

In a loopless graph  with adjacency matrix , the number of triangles is given by .

Proof:  gives the number of closed walks of length , since each diagonal entry in  is
the number of walks of length  from that vertex to itself (the sum principle motivates 
here). So, if  has no loops, this counts the number of triangles in , since in this case a closed
walk of length  must be a triangle.



Chapter 3 - Trees

Definitions

A tree  is a connected graph with no cycles. A forest is a (not necessarily connected) graph with no
cycles. A leaf is a vertex of degree .

Spanning Trees
We generate a spanning tree of a connected graph  by continually removing edges from cycles until
no cycles remain in the graph.

Each component of a forest is a tree (hence the name).

Theorem 3.1.1

The following is uniquely true for a tree  with  vertices:

1. Any two vertices  are connected by a unique path

2. Every edge  is a bridge, i.e.  is minimally connected

3.  contains  edges, i.e. 
4. ADV   must have at least  leaves if 

By corollary, a forest with  vertices and  components has  edges since it consists of  trees

Proofs:
1. If two different paths between vertices existed, the union between these paths would be a

cycle, a contradiction

2. If an edge is not a bridge, then another path connects its endpoints; the union of this edge
and that path would be a cycle, a contradiction

3. Each vertex either has one edge that connects to its parent, or is the root (and has no such
edges). A tree only has one root, so a tree with  vertices has  edges

4. The proof is inductive. Base case: the only  tree is , which has  leaves. Inductive
case: adding adding a node can't remove an edge from the count without creating a cycle

Removing an edge from a cycle does not disconnect the graph because, by definition, there are at
least two disjoint paths between two nodes in a cycle

If  has multiple components, this procedure produces a spanning forest
A graph  has a spanning tree if and only if it is connected, otherwise it has a spanning
forest

The complement of spanning tree  of  is defined as 



Counting Trees

Labelled Trees

Prüfer Sequences

A Prüfer sequence or Prüfer code is a unique -ary sequence (i.e. where )
associated with a labelled tree with  vertices.

Tree → Prüfer sequence: Find leaf  with the smallest label. The first term of the Prüfer
sequence  will be the neighbour of . Delete  from  (i.e. iterate ). Repeat this
process until no vertices remain.

Prüfer sequence → tree: for -ary sequence , we construct the corresponding
tree by finding the smallest  that is not in . We join vertex with label  to the first
vertex in  (initially ). Next, we update  by removing the first element and appending  to the

Theorem 3.1.2

If  is a spanning tree of connected graph , then

1. Each cutset of  has an edge in common with 

2. Each cycle of  has an edge in common with the complement of 

Proofs:
1. If some cutset  of  has no edges in common with , then  is a disconnected graph

of which  is a subgraph, which is clearly absurd.

2. If a cycle didn't have an edge in common with the complement of , then  would contain
this cycle, a contradiction

Theorem: Cayley's Formula

There are  non-isomorphic labelled trees  with  vertices.

As a corollary, labelled  has  spanning trees.

Proof: the following definition of Prüfer sequences is a bijection, implying there are an equal
number of non-isomorphic labelled trees with  vertices and -ary sequences of length , i.e.

.

The set of labelled trees with  vertices is isomorphic to the set of -ary sequences of length
.



back end. This repeats until we have completely replaced ; the last edge the two nodes missing from
the last state of .

Spanning Trees

We define  as the number of spanning trees of connected, labelled graph .

A walkthrough is available here

ADV  we define  as the set of all spanning trees of 

Matrix Tree Theorem/Kirchoff's Theorem

Let  be the  adjacency matrix of loopless graph  of order . Let  be the diagonal
graph whose th entry is , for . Then  is equal to any cofactor of the
Laplacian matrix .

ADV  Alternatively, we can define , where  are the eigenvalues of

the Laplacian matrix

E.g. For a graph with adjacency matrix , we have , so

. If we take cofactor , we evaluate

, which is the number of spanning trees in .

https://web.math.ucsb.edu/~adeboye/137A_II/Homework%204-Solutions%20copy.pdf


If all spanning trees in graph  pass through vertex  (i.e.  is a cut-vertex), then for the
components  of  induced by , we have . This is because each
component has a spanning tree that includes .

Bipartite Graphs

As pre-corollaries, we have  and .

ADV  Non-labelled Trees

Enumerating non-labelled trees is a much less trivial problem, requiring knowledge of combinatorics
not assumed or covered in this course.

A useful way to manually generate all the non-isomorphic trees on  vertices is to list all trees  by
, where  for each .  corresponds to the graph  and 

corresponds to the tree of depth  (i.e. ).

ADV  Relating Edge, Vertex, and Component Counts

Define the attributes of  as , , and .

Simplified explanation of : there are  choices for the path that joins the 
vertices on the "  side" through a vertex on the  side. Then, the remaining  vertices on the
 side have  choices on the  side. So, by the multiplication principle, there are  possible

spanning trees.

Simplified explanation of : we have  methods of joining the  side: either they
are all a tree from one vertex on the  side, for which there are  choices, or they are connected

by  different trees (forming a path), for which there are  choices. Since these are separate

rules, we use the sum rule to find .

Theorem 3.1.5: Spanning Tree Counts of Bipartite Graphs

Proof: Follows from Kirchoff's theorem and the cofactor expansion definition of the determinant
(full proof in course notes)
Aside: this could also likely be proved by generalizing the pattern from the  and  or
by induction on .

Quora: Does a formula for non-isomorphic trees on n vertices exist?
OEIS: sequence of numbers of non-isomorphic trees on n vertices: 

https://www.quora.com/Does-there-exist-some-kind-of-formula-to-calculate-the-amount-of-non-isomorphic-trees-graph-theory-you-can-form-with-a-given-order-amount-of-nodes-of-the-tree
https://oeis.org/A000081


Minimum Connector Problem and Kruskal's Algorithm

Minimum Connector Problem: given a edge-weighted, (not necessarily connected) graph , what
is the least expensive spanning tree? This problem can be solved with Kruskal's Algorithm (

).

ADV  Theorem 7.5

For all graphs  we have , where  if and only if  is a forest.

Proof: : Clearly, each component in the forest is a tree, and each component with  nodes

needs exactly  edges. , since each node must be in a component, so it follows that

. : Having a cycle would definitionally require more edges,

so if the equality holds,  must be a forrest.

ADV  Corollary 7.6

For all graphs , we have , where  if and only if  is a tree

Proof: we take  and apply theorem 7.5

ADV  Theorem 7.8: Two-out-of-three Theorem

Any two of the following conditions implies the other

 is connected

 has no cycles

Kruskal's MST Algorithm

Begin with the edge  of the smallest weight. Define the rest of  as the next smallest
edge that does not form a cycle.

Proof: Clearly the algorithm terminates once  edges have been selected, which by definition
won't form a spanning tree since edges are picked such that cycles are not formed. Since the
edges of minimum weight are picked each time, this is the spanning tree of smallest weight.



Interesting Conjectures

ADV  Search Trees

A search tree augments a spanning tree with extra information that improves navigation within the
graph: a root vertex , a parent function , and a level function

.

A search tree can be generated by starting with a random root node and randomly picking edges in
the boundary that connect to that node, assigning the root as a parent, and repeating the process
recursively:

Aside: Kruskal's algorithm is a greedy algorithm.

Aside: Kruskal's algorithm provides a lower bound on the travelling salesman problem

Graceful Tree Conjecture

If  is a tree with  edges, then the vertices of  can be assigned a graceful labelling, i.e.
labelled  such that the edge-differences (difference between adjacent vertices) are

.

Ringel's Conjecture/Theorem (Proved 2020)

Every complete graph  can be perfectly tiled by any tree with  vertices

The structure of the search tree  is defined by  and .

Create-Search-Tree (Graph G, Vertex v* \in V(G)) -> pr (function), l (function):
let W = {v*}
let F = {}
let pr(v) = null
let l(v) = 0
let Boundary = d(W)

while(Boundary is nonempty)
pick Edge e=xy with x in W and y not in W
W = W \union {y}
F = F \union {e}
pr(y) = x
l(y) = 1+l(x)
Boundary = d(W)

return functions pr, l 



ADV  Theorem 7.15: Search Trees

For inputs and outputs , , , and  of the
algorithm above:

 and .
For any , the unique path from  to  in  is found by iterating  until

.

For any , the length of the unique path from  to  in  is .



Chapter 4 - Planarity

Definitions (4.1)

A planar graph is a graph that has a plane drawing/planar embedding, i.e. that can be drawn
on a plane without any edges crossing.

The crossing number  of graph  is the minimum number of crossings required to draw  in
the plane.

Many real-world situations modelled by graphs are planar, e.g. geographic maps

ADV  Formal Definition of Planar Embedding

A planar embedding of  is a pair of sets  such that

1.  is a set of points in  indexed by 

2.  is a set of distinct simple curves in  indexed by 
Note: we define a curve as an injective continuous function ; broadly, a
curve interpolates between two endpoints

3. For any edge ,  and  correspond to the points  that are connected by ,
i.e. where 

 if and only if  is a loop at 

4. For any vertex  and edge , if , then  and  is either equal to  or
 (any vertex that lies on an edge is a adjacent to it, and lies at an endpoint)

5. For edges nonequal , if  and , then  (distinct
edges may only intersect at their endpoints).

ADV  Jordan Curve Theorem (Topology)

For simple closed curve  in ,  has exactly two connected components that correspond to
the interior and exterior of . We say the curve separates these components.

If  is planar, then .

Proving a crossing number requires drawing the graph with that number of crossings, then
proving one with less crossings cannot exist

Turán conjecture:  (shown up to )

The crossing number problem is NP-complete



Characterizing Planar Graphs

Two graphs are homeomorphic if one can be constructed from the other by "splitting" existing edges
by inserting new vertices.

A good strategy for figuring out if small-ish graph are planar (i.e. have a subgraph homeomorphic to
 or ) is to draw vertices (and appropriate edges) one-by-one, taking care not to cross edges.

Either a new vertex can be drawn without creating a crossing, or some subgraph homeomorphic to 
or  exists and can be identified by inspection.

Euler's Formula (4.2)
A planar graph  divides the plane into faces, including the unbounded infinite face "around" the
graph.

ADV  Lemmae 8.4, 8.5

Every subgraph  of planar graph  is also planar

Every simplification  of planar multigraph  is planar

Theorem 4.1.1

The graphs  and  are non-planar

Proof of :  has a cycle of length , (and  vertices) so any plane drawing will consist this
-cycle and edges that are either completely inside or outside of this cycle (since otherwise a

crossing would occur). There are three instances of these chords dividing the cycle in half; clearly
at most one can go across the cycle and one outside. Adding the third one creates a crossing. So

 is not planar.
A similar argument can be made for  with a cycle of length .

Strategy for proving non-planarity: find the largest cycle in the graph (i.e. one that contains all
the vertices if possible), characterize the rest of the edges as fully "inside" or "outside" the cycle,
then show these chords need to cross.

We describe this process as the subdivision of an edge

Theorem 4.1.2: Kuratowski's Theorem

A graph is planar if and only if it does not contain a subgraph homeomorphic to  or .

Proof: complicated af and not covered here



Theorem 4.2.1: Euler's Formula

For simple connected planar graph  with  vertices,  edges, and  faces (in a plane drawing),
we have .

Proof: We use induction on . Base case:  clearly holds since the only connected graph has
. Inductive case: assume formula holds for . Let  be a planar graph with  edges.

If  is a tree, no new face was created (since no cycles were created), so an extra vertex must
have been added; , so the induction step holds. Otherwise, a cycle was
created, so although the number of nodes  didn't increase, the number of faces increased by ,
so the sum still stays constant.

Corollary 4.2.2

For simple connected planar graph  with  vertices and  edges, we have

, i.e. 

, i.e.  iff  has no triangles (i.e.  has girth 
).

We can use this to prove the non-planarity of  (point ) and  (point )

ADV  Generalization of Corollary 4.2.2 to Arbitrary Girth

For simple connected planar graph  with  vertices,  edges, and girth , we have

Proof (covers that of Corollary 4.2.2): Since  has girth , by the faceshaking lemma, we have
, where , implying . Subbing this into Euler's formula, we get

, from which we derive Corollary 4.2.2 through algebra.

Theorem 4.2.3

Every simple planar graph  has a vertex of degree at most 

So, if every vertex of a simple graph has a degree of  or higher, it cannot be planar.



ADV  Faceshaking Lemma

The footprint  of subgraph  of  with planar embedding  is the union of the
points and curves representing the vertices and edges in  when "rendered" in .

The boundary  of face  is the set of edges and vertices whose curves and points (respectively)
are contained in .

The degree of face  is the sum of the number of edges and bridges adjacent to 

Graphs on Non-planar Surfaces (4.3)

Proof: Assume for contradiction a simple planar graph exists where each vertex has degree of at
least . Then, this graph has at least  edges. However, since  is planar, we much have

, so we have , which is impossible.

ADV  Component Generalization of Euler's Formula

For simple planar graph  with  vertices,  edges,  faces (in a plane drawing), and 
components, we have .

Proof sketch: we use induction as before, but add an extra case where the additional edge
connects two components together. This doesn't add a face or vertex, but decreases the number
of components by , balancing the formula.

With this definition, we can recharacterize a face of  as a connected component of
, i.e. the complementary component of 

A bridge across face  is an edge that is "inside" , but doesn't separate it, i.e. a peninsula or
an edge crossing the infinite face.

ADV  Faceshaking Lemma

For graph  with planar embedding  and set of faces , we have 

This follows from the duality between faces and vertices discussed later

E.g. Any graph  such that  (e.g. the Petersen graph) can be drawn on a torus without
edge crossing; intuitively, we can wrap the crossing edge around the other side of the torus.



The genus  of graph  is the smallest genus such that  can be drawn on a surface of that genus
without crossings.

In topology, a surface of genus  is topologically homeomorphic to a sphere with  handles.

Theorem 4.3.1: Relating Crossing Number and Genus

For any graph , we have 

Proof: We draw  on a (genus ) plane with  crossings. Then, we construct a handle at each
crossing and draw one edge over it and the other under it. Therefore, at most  handles are
needed, meaning 

For most graphs, the inequality is strict, i.e.  because multiple crossings can be
planarly rerouted around handles

Theorem 4.3.2: Genus Generalization of Euler's Formula (Topological Invariant)

For connected graph  of genus  with  vertices,  edges, and  faces, we have

Theorem 4.3.3: Constraint on Genera of Simple Graphs

For simple graph  with  vertices and  edges, we have 

Proof: much like our relation on the edge and vertex counts, the girth of at least  implied by
"simple graph" implies , which can be substituted into Euler's (genus-generalized)
formula to find , which is equivalent to the Theorem 4.3.3 since  must be
an integer.



ADV  Stereographic Projection

Stereographic projection is the process of extending the line segment that intersects the center of a
sphere and a point on the surface until it intersects with a plane ( ) below the sphere. A graph that
is planar on a sphere can be stenographically projected onto a flat plain while retaining its planarity,
and vice-versa.

Thus, the plane is topologically homeomorphic to the sphere; a graph has a planar embedding if and
only it can be drawn on a sphere without crossings.

Duality (4.4)

Theorem 4.3.4: Ringel/Young Theorem

Explanation: since  has  edges, we can substitute this into theorem 4.3.3 to

find . Proving that this is an equality is much more difficult.

ADV  Proposition 8.16

If  is a connected simple planar graph with at least  vertices and  represents the number of
vertices in  with degree  for each , then

where the equality holds if and only if each face has degree , i.e. is a triangle.

Proof: by the handshaking lemma, we have , since all but

finitely many terms in the infinite series will be . By the faceshaking lemma,
. Since  is connected, by Euler's formula, we have

. Together, this yields , implying the

proposition.

The "northern hemisphere" of the sphere is projected "up into infinity", so we cannot draw
vertices on it. This forms the face at infinity, which is the "outside" face of a planar embedding.

This suggests that all convex polyhedral graphs are planar



The dual graph  of planar graph  is the graph obtained by drawing a vertex in each face of 
and connecting the vertices of adjacent faces with edges.

If  is a connected planar graph, then  will also be a connected planar graph.

Dual Concepts

Properties are dual if property  of  corresponds to property  of . Thus, theorems about  in 
correspond to theorems about  in .

Since each edge in  separates two faces by definition, we simply cross each edge in  with
another edge in 
E.g. the dual of a Voronoi Diagram is a Delaunay Triangulation

Two isomorphic graphs may have non-isomorphic duals, i.e. duality isn't well defined over
isomorphism

Lemma 4.4.1: Relation of Characteristics between a graph and its dual

The dual  of connected planar graph  with  vertices,  edges, and  faces will have 
vertices,  edges, and  faces

Proof: By the definition of , clearly it will have  vertices and  edges (this remains
unchanged). We find that  has  faces from Euler's formula.

So, for any choices of point within a face of the graph, a planar embedding must exist where
those points form the endpoints of the curves connecting the vertices of the dual graph (more in
Lemma 8.27 in the 249 notes).

Theorem 4.4.2

For any connected planar graph , , i.e.  is always isomorphic to its own "double
dual"

Proof:

Faces and vertices are dual objects

Cycles and cutsets are dual objects
So,  and vice versa

Bridges and Loops are dual concepts
I.e. for planar graph, a bridge is a "peninsula" jutting into a face

Having an Eulerian cycle and being bipartite are dual concepts.



ADV  Appendix: Extra Concepts

Platonic Solids

A platonic solid is any polyhedron represented by a connected -regular plane embedding that is
face- -regular. There are exactly  such graphs (where embedding is unique up to isomorphism), i.e.
possible values of :

Deriving Global Statements about Types Planar Graphs

Often, if we know properties about a graph , we can describe , , and  (if  is planar)
as series/sums, usually utilizing the handshaking and faceshaking lemmas. We can then substitute
these into Euler's formula to relate them in a sequence.

We can then use this formula to find properties about the type of graph we've described.

Proof sketch: Eulerian cycle in   each degree of  is even  (dual) each face of 
as an even degree   has no odd cycles   is bipartite.

Theorem 4.4.3

For any connected planar graph  with dual , a set  of edges in  forms a cycle if
and only if the corresponding set  in  form a cutset

Proof (half): : If  is a cycle in , then it encloses at least one face of . Thus, the
corresponding faces in will enclose a vertex in . So, the set of edges in  that "cross" the
edges of  in  clearly disconnect the enclosed vertex in  from the rest of the graph. :
similar proof.

Corollary 4.4.4

A set of edges in  form a cutset if and only if the corresponding edges in  form a cycle

Tetrahedron ( ): 
Octahedron: 

Cube ( ): 

Icosahedron: 

Dodecahedron: 

E.g. for simple, cubic, bridgeless, planar graphs, if  is the number of faces of degree , we find
the identity 



E.g. for simple, cubic, bridgeless, planar graphs, (with the sequence above) we find that if the
faces consist entirely of pentagons, then there must be exactly  faces (i.e. the dodecahedron).
We also find that if the graph consists entirely of rectangular faces, it must have exactly  faces
(i.e. the cube). This sequence in particular can be used to prove useful faces about the uniqueness
of the platonic solids (with the exception of the icosahedron, which is not cubic).



Chapter 5 - Coloring

Coloring Vertices (5.1)

Loopless graph  is -colorable if we can color the vertices of  with -different colors such that no
adjacent vertices are the same color.

The chromatic number  of  is the integer  such that  is -colorable but not -
colorable.

A proper -coloring of graph  is a function  that assigns each vertex
of  a color ( ) such that .

-partition and -colorability are the same thing, e.g. bipartite  -colorable

Theorem 5.1.1: Relation between Chromatic Number and Clique size

For any graph , we have 

Proof: clearly, any clique of size  has chromatic number of at least , since the clique is a
complete subgraph of size . There are additional non-clique ways to increase this number,
explaining why this theorem isn't an equality.

Theorem 5.1.2: Relation between  and 

For any simple graph , we have 

Proof by induction on : Base case: for , the only simple graph is . Clearly,
. Induction hypothesis: Assume  holds for a

graph  with  vertices. Let  have  vertices, and choose any vertex  and consider
. By the induction assumption, this must be -colorable.  had a most 

neighbours, so we can color it a different color than all of these; so  must be 
colorable, completing the induction hypothesis.

Greedy Coloring Algorithm

We look at the vertices of  in order, and assign the first color that isn't adjacent to the current
vertex. If no such color exists, we add a new one.



Aside: An open problem in graph theory is the chromatic number of the unit distance graph of , i.e.
the graph where the vertices are the points of  and vertices are adjacent iff they have a Euclidean
distance of . Currently, we know this number is between  and  (inclusive).

Coloring Vertices of Planar Graphs

Note: these theorems are equivalent to finding the minimum number of colors needed to color the faces
of a cubic planar graph without bridges. If graph can be face-colored with  colors, it is -
colorable(f).

Remark: this algorithm is not optimal (i.e. it doesn't find the least coloring (and thus chromatic
number) of the graph), but it can be used to place a bound on the chromatic number of a graph.
There is always a way to choose the order of 's vertices such that this algorithm only uses 
colors. However, we don't know this order, and being able to find it is basically the whole
problem anyway

Theorem 5.1.3: Brook's Theorem

If  is a simple graph with  that isn't complete or an odd cycle, then 

Theorem 5.1.4: 6-color Theorem

Every simple planar graph is -colorable

Proof: we proceed by induction on . Base case: for ,  is definitely -colourable. Inductive
case: assume a simple planar graph with  vertices is -colorable. If  is a simple planar graph
with  vertices, it must have a vertex  of degree at most  (since it is planar). So, 
will be -colorable by the induction assumption. Thus, we can "add  back" and color differently
than its (at most ) neighbours. So,  is also -colorable, completing the inductive proof.

Theorem 5.1.5: 5-color Theorem (Heawood, 1890)

Every simple planar graph is -colorable

Proof: we proceed by strong induction on . Base case: again,  is clearly -colorable. Assume
any graph  with  vertices or less is -colorable. Again, since  is a simple planar graph, it has
a vertex  of degree at most . By the induction assumption,  is -colorable. If the
neighbours of  aren't all different colors, clearly we can pick a color for , so  is trivially -
colorable in this case. If each neighbour is a different color, there must be at one pair  of
these neighbours that aren't adjacent, since otherwise  would contain a  subgraph and thus
not be planar. If we contract edges  and , we obtain a graph with  vertices that can be



Remark: since planar graphs always have a well-defined dual, coloring theorems also apply to the dual
structures as well, e.g. -colorability is equivalent to -colorability(f).

Remark: many planar coloring proofs involve induction or strong induction on the number of vertices,
where some graph  is used to apply the induction hypothesis.

ADV  Chromatic Number and Girth

Generally, a large chromatic number implies a high level of interconnection between vertices, while
large girth suggests the opposite. However, graphs with arbitrarily large (though not strictly arbitrary)
girth and chromatic number can be found.

We define the Mycielski construction of graph  as follows: let  be a set of
"new" vertices disjoint from , and  be another vertex not in . Let Mycielski
construction  of  be the graph with vertices  and edges

.

-colored by the induction hypothesis. So, we can replace  and , assigning them the same
color.  now has  neighbours with  colors, so we can color  the fifth color.

Theorem 5.1.6: 4-color Theorem (Appel and Haken, 1976)

Every simple planar graph is -colorable

Corollary: every cubic planar graph with no bridges is -colorable

Proof: lol

Theorem 5.1.7

Every cubic planar graph with no bridges is -colorable(f).

Theorem 5.1.8

A graph is -colorable(f) (bipartite) if and only if it is Eulerian

ADV  Theorem 9.11: Erdős, 1959

For all  and , a graph with chromatic number with at least  and chromatic number at
least  can be found.



Perfect Graphs (5.2)

A perfect graph is a simple graph where every induced subgraph  of  satisfies
, i.e. for every subgraph, the chromatic number is the size of the largest clique in the

subgraph.

 will contain  as a subgraph

ADV  Lemma 9.13

If graph  has girth , then the Mycielski construction  of  also has girth 
.

ADV  Lemma 9.14

For any graph , we have , i.e. applying the Mycielski construction
increases the chromatic number of  by .

By corollary, for any  there exists a -chromatic graph of girth . We find that examples for
 are easy to find, and iterating  settle the remaining cases.

Both of the above theorems may be proven as exercises

Theorem 5.2.1: Perfect Graph Theorem (1972)

A graph  is perfect if and only if its complement  is perfect

Any , bipartite graphs, and (thus) trees are perfect
 is perfect for even  or 



An odd hole in graph  is an induced cycle of odd length with no chords. The complement of an odd
hole is an odd antihole (i.e. if the odd hole is , then an odd antihole is )

Note: in perfect graphs, the graph coloring and maximal clique problems are of class .

Edge Coloring (5.3)
A graph  is -colorable(e) if its edges can be colored with  colors such that no adjacent edges are
given the same color.  has chromatic index , denoted  iff it is -colorable(e) but not

-colorable(e).

Vizing's Theorem implies loopless cubic graphs either have  or . A snark is a
simple bridgeless cubic graph with chromatic number , e.g. Petersen's graph.

Snarky Theorems

Theorem 5.2.2: Strong Perfect Graph Theorem (2002)

A graph is perfect if and only if it has no odd holes or odd antiholes

Theorem 5.3.1: Vizing's Theorem (1964)

If  is a simple graph, then , i.e.  or 

Theorem 5.3.2

If  is even, 
If  is odd, 

Proof:
Odd : We can -color(e)  by arranging the vertices as a regular -gon and coloring each
edge of the -gon cycle a different color. Then, each edge in the rest of the graph is colored
like the edge in the -gon cycle that it is parallel to. We know  cannot be -colorable

because we could color at most  edges;  has 

edges.

Even : We -color(e)  as described above, then add one additional vertex and connect
it to each existing one. Because each vertex in  has degree , there will be one
(unique) color left over from each vertex in .

Aside: this mimics the structure of  for even  in coding theory



Theorem 5.3.3

Snarks cannot have Hamiltonian cycles. Thus, if a cubic graph is Hamiltonian, it is not a snark

Proof: A cubic graph must have an even number of vertices, so the hamiltonian cycle has an even
amount of edges, meaning it can be -colored(e). The rest of the edges are chords inside this
cycle; since the graph is cubic, no vertex is connected to more than one chord, so the rest of the
(chords) (edges) can be colored with one color.

Theorem 5.3.4

No planar snarks exist, i.e. every simple, bridgeless, planar cubic graph has a chromatic index of
.

This is equivalent to the four-color theorem; we can assign colors to edges based on the colors of
the faces that the edges separate. Namely, if a planar graph is -colored(f), each disjoint pair of

face color combinations that an edge can separate is assigned a color. There are  such

combinations, so there are  mutually disjoint pairs. These three colors correspond to the -
coloring(e) of the simple bridgeless planar cubic graph.

Tait's Conjecture (false)

All loopless, bridgeless, planar cubic graphs are Hamiltonian

The Tutte graph is a counterexample

If Tait's conjecture were true, we could prove the four-color theorem by showing  is a cubic
planar graph with no bridges   is Hamiltonian (by Tait's conjecture)   is -
colorable(e)   is -colorable(f).

Theorem 5.3.5 (Konig, 1916)

If  is a bipartite graph, then 

Proof: We proceed by induction on the number of edges
Base case: For  and , the graphs  and  (respectively) satisfy .

Inductive case: Assume any bipartite graph  with  edges satisfies . Let 
be a bipartite graph with  edges. For an edge ,  can be
colored(e) using  colors. In , clearly , so  and  are

https://en.wikipedia.org/wiki/Tutte_graph


By corollary, .

Chromatic Polynomials (5.4)

For a simple labelled graph , we define the chromatic function/chromatic polynomial
 of  as, for each , the number of ways to -color the vertices of  such that no two

adjacent vertices are the same.

Aside: how are chromatic polynomials connected with generating series? Are they an example of
generating series?

Finding Chromatic Polynomials

both missing a color; we will denote them  and  respectively. Clearly, if , then we
assign  color . If , we consider the  Kempe chains (chains of two alternating
colors) from each  and .  is bipartite, so it cannot have an odd cycle; thus the chains
cannot link. Thus, we can swap  and  on the chain from , then assign  color .

 is always a polynomial of degree 

If , then  for 

Certain coefficients always have the same value
 term: 

 term: 

 (constant term): 

Aside: these seem to mimic the meanings of terms in the characteristic polynomial of a
matrix. Is this related to spectral theory?

Coefficients alternate in sign

If  is a simple planar graph, then 

Theorem 5.4.1: Chromatic Polynomial Decomposition Theorem

For a simple graph  and graphs  and  obtained by deleting and contracting edge
 from  respectively, we have 

So, we get the definition for the contracted edge graph 

We use  to denote deletion so it's easier to distinguish from contraction
Proof sketch: if edge , then in ,  and  may be colored differently or the same
color. In ,  and  "become the same vertex", meaning they must be colored the same. So,
for any , the number of ways to color  and  differently (which is required in ) is the total
number of ways to color them (like in ) minus the number of ways to color them the same
color (like in ).



Generally, we find chromatic polynomials by determining how many colors can be used to color each
vertex in a graph successively. For example, the first vertex we pick can be colored  ways; one
adjacent to that can be colored  ways, and one adjacent to both can be colored  ways. Each
time, we figure out how many ways the successive vertex can be colored. We can then find all the ways
to color the vertices by multiplying these terms together (product rule).

We can also divide colorings into disjoint cases, then add the different resulting polynomials together
(sum rule). Usually, these cases are whether two (non-adjacent) vertices are the same or different
colors.

Finally, we can use the decomposition theorem to express the chromatic polynomials of complex
graphs as the differences between chromatic polynomials of simpler graphs.

Overall, finding chromatic polynomials is a combinatorial counting exercise, but we count down from
an arbitrary  instead of up from . [The factored forms of] chromatic polynomials themselves are a
way to capture the counting behaviour of enumerating graph colourings.

Example

Since the polynomial has an argument for the number of colors, we also count starting with an
arbitrary number of colors ( ). The number of ways to color each vertex expressed as .

In the above example, we found the chromatic polynomial of  is .

Aside: how can we characterize which graphs' chromatic polynomials can be "read off" like this

Specifically, holes should be decomposed.



Chromatic Polynomials of Common Graphs

NAME/TYPE SYMBOL CHROMATIC 
POLYNOMIAL

EXPLANATION

Null Graph We can pick any of the  colors for 
each vertex.

Path Graph We have  choices for the first color, 
then each subsequent one is adjacent 
to one colored vertex →  choices

Complete graph Since every vertex is adjacent to every 
other, we have  choices for the first, 

 for the second,  for the 
third, etc.

Cycle Graph (for ) We use induction and the 
decomposition theorem, which 



NAME/TYPE SYMBOL CHROMATIC 
POLYNOMIAL

EXPLANATION

decomposes a cycle into a different 
cycle (contraction, inductive case) and 
a path graph (deletion, base case)

Tree We pick an arbitrary (of ) color for 
the root, then each next vertex is 
adjacent to one other colored one, and 
thus has  choices for coloring



Chapter 6 - Digraphs

Definitions and Elementary Theorems (6.1)

Digraphs

A directed graph or digraph  is a tuple  where  is a set of vertices and  is
a set of directed arcs that connect the vertices. An arc connecting vertices  is denoted 
(not equivalent to )

The out-degree  of vertex  in digraph  is the number of arcs leaving ; the in-degree
 of  is the number of arcs that end in .

A simple digraph is a loopless digraph with unique arcs (again, )

The underlying graph of digraph  is the "regular" graph obtained by replacing each arc with an
edge

Connectivity

A digraph  is strongly connected if a (directional) path exists between any two vertices in .

A vertex  in digraph  is a source if , i.e. all adjacent arcs point away from ; 
is a sink if , i.e. all adjacent arcs point towards .

Essentially, a digraph is a like a graph, but edges have direction
Most of our definitions extend naturally to digraphs

Aside: we can treat a "regular" graph like a digraph where each edge is a pair of oppositely
directed arcs

Handshaking Dilemma

In a directed graph , we have 

Aside: we can consider the underlying graphs as equivalence classes over directed graphs ,
where arcs  if they connect the same vertices (not necessarily in the same order).

This is an extension of the regular definition for digraphs

A strongly connected digraph cannot have a source, nor can it have a sink



Eulerian and Hamiltonian Digraphs (6.2)

Eulerian and Semi-Eulerian Digraphs

Hamiltonian Paths and Tournaments

A tournament is a digraph where each pair of vertices is joined by exactly one arc. i.e. its underlying
graph is a complete graph .

Aside: Enumerating source → sink paths can be done with a recurrence relation, so finding every
source-sink path (and thus the critical path) can be done with dynamic programming.

Lemma 6.2.1

If every vertex in digraph  has at least one incoming arc and one outgoing arc, then  has a
cycle

Proof: Pick an arbitrary vertex , then pick an arbitrary outgoing arc from  to some .
Continue this process. At some point, you must reach a vertex that is in the sequence

. This forms a cycle.

Theorem 6.2.2

A connected digraph is Eulerian if and only if every vertex  has the same in- and out- degree,
i.e.  for all vertices .

Proof:  is clear via the same reasoning as the undirected case.  like in the undirected
case, we proceed by strong induction with base cases  and the graph with one vertex and one
arc-loop. Like before, we can assume an eulerian cycle exists, remove it, assume by the induction
hypothesis that an eulerian cycle exists in each component left behind, then move around the
main cycle and follow the eulerian cycle around each component when it is reached.

Corollary 6.2.3

A digraph  is semi-Eulerian if an only if  is true for all but  vertices of
. These two vertices  will have in- and out- degrees that differ oppositely by , i.e.

 (or swap ). The semi-Eulerian
trail will have  as endpoints.

Such graphs are named tournaments because if each vertex represents a team and all teams play
each other, the direction of the arc between two teams can encode who won each match. This can



A tournament is transitive if arcs  and  imply arc .

So, there are two types of tournaments: strongly connected ones with Hamiltonian paths, or transitive
ones with semi-Hamiltonian paths and no cycles.

Critical Paths (6.3)

"rank" players.

Theorem 6.2.4

1. Every tournament is either Hamiltonian or semi-Hamiltonian

2. Every strongly connected tournament is Hamiltonian

UAlberta theorem!

Proof (1): We proceed by induction. Base case: for , the directed path graph  is clearly
semi-Hamiltonian. Inductive case: assume tournaments with  vertices are Hamiltonian or semi-
Hamiltonian; let  have  vertices. Clearly, for arbitrary ,  is Hamiltonian or
semi-Hamiltonian by the induction assumption. If  is Hamiltonian, then clearly  is semi-
Hamiltonian. Otherwise, let  by semi-Hamiltonian, with semi-Hamiltonian path

. If edge  is in , then  is semi-
Hamiltonian. Otherwise, if  isn't in  for any , then edge  must be in  (since it is a
tournament), and thus  is a semi-Hamiltonian path.

Proof sketch (2): we can use induction to show that  has a cycle of length .

Lemma 6.2.5

A tournament is transitive if and only if it has no cycles

Proof: : Clearly, for a cycle in the tournament of size , the first  arc form a path from
 to . The last arc of the cycle isn't  since we already know it must be , since it

forms a cycle. So, the tournament isn't transitive. : if  has no cycles, it must be semi-
hamiltonian with semi-hamiltonian path . Clearly, every path must be in the
form  for , otherwise a cycle would exist. Therefore, any subpath of the semi-hamiltonian
path is transitive; this includes all the vertices of the graph that are reachable, so the whole
graph is transitive.

Theorem 6.2.6

A tournament has a unique semi-Hamiltonian path if and only if the tournament is transitive



In task scheduling problems, some subtasks can be completed whenever while others must be
completed in a particular order, i.e. after a specific subtask. Such problems can be expressed as arc-
weighted digraphs, where arcs (weighted by time) represent subtasks and two arcs are adjacent if one
must be complete before the other begins. Our goal is to minimize the time needed to complete all the
subtasks; this is represented by the longest path from source to sink (critical path).

For critical path-finding algorithms, take an algorithms course!

Networks (6.4)

A network is a weighted digraph with one source and one sink. Each arc  is weighted by its
capacity  which defines the maximum unit (e.g. electric current, water, etc) that can travel
through it at a given moment in time.

Definitions: Flows and Cuts

A flow  in network  is a function  that assigns each arc  a non-negative
real value  where:

So, informally, a flow describes a way that the unit can "flow" (ahaaaaaa) through the network
without pooling or exceeding the capacity of any particular pathway.

The zero-flow  maps each arc to .

A saturated arc is an arc  such that 

The value of a flow is the sum of the flows out of the source and/or the sum of the flows into the sink.
Clearly these must be equal by the handshaking dilemma; this also makes sense in our informal
interpretation.

The maximum flow is a flow  that has the largest possible flow value for the network; we often
want to find this  to optimize the network.

This works because this longest path must be completed, and thus sets a lower bound on how
long it might take to complete the task. It also indicates which tasks should be started
immediately, and which can be waited on without increasing the time it takes to complete the
task.

The out-degree of each vertex  in network  is the sum of capacities leaving ; the in-degree of 
is the sum of capacities entering .

 for each arc 
For all vertices ,  with the exception of the source and sink

Aside: this is reminiscent of Kirchoff's laws for electric circuits. This is the same Kirchoff that
proved the matrix-tree theorem in chapter 3…



A cut  in digraph  is a set of arcs whose removal disconnects the source from the sink. The
cut's capacity is the sum of the capacities of the cut, i.e. 

Max-Flow Min-Cut Theorem

A flow-augmenting path in network  is a path where arcs can be travelled in either direction if

So, if a path has a saturated arc when traveling forward or a zero-flow arc when travelling backward,
then the path cannot be flow-augmented (and thus nor can the network?)

Flow-augmenting paths can be used to find maximum flows because they can be iteratively improved.
Note that the "path" itself isn't always being changed, but the amount traveling through each arc in
the path is tweaked.

The minimum cut is derived from the maximum flow in network  by bipartitioning it into
, where  contains the source and any vertices that can be reached from it by flow-

augmenting paths and  contains all other vertices. The arcs joining vertices in  to those in  (i.e.
) form the minimum cut.

The maximum flow  of network  can be thought of as a union/sum of a subset of the source to sink
paths in  such that the capacity of each arc isn't surpassed. This subset may not be (and usually

Often, our goal is to find the minimum cut, i.e. the cut with the smallest capacity

Theorem 6.4.1: Max-Flow Min-Cut Theorem

In any network , the value of the minimum cut is equal to that of the maximum flow

This makes intuitive sense as a bound; clearly the minimum cut cannot be smaller than the
maximum flow, or "too much unit" would be flowing through the subset of arcs defined by the
cut at any moment in time

1. Each forward-travelled arc in the path is unsaturated

2. Each backward-travelled arc in the path has nonzero flow

Increasing the flow of a digraph

1. We calculate the slack  of each forward-travelled arc

2. We record  for each backward-oriented arc 
3. From these values, we calculate 

4. We decrease the flow in each backward arc by  and increase the flow in each forward arc
by . Overall, this increases the flow value by 



isn't) unique.

Finding Max Flows/Min Cuts

Generally, I find the best way to find maximum flow in a network is to do a depth-first search of all
the source → sink paths in the network. Each time, I find the smallest slack left in a single arc in the
path, and increase the flow through each of the arcs by that slack. Eventually, there will clearly be no
way to leave the sink/get to the source; the max flow is thus found.

Minimum cut can be found with a recursive "choke point" algorithm. The arcs connecting directly to
the sink form the initial cut (note that this is indeed a cutset). Then, consider the total weight of the
arcs leading into the first arc. If they have less capacity than the arc itself, they replace that arc in the
cutset.

Once a node is saturated (i.e. it has reached its maximal input/output), any paths leading to it
don't need to be considered and can be crossed out

As a matter of notation, arcs with  capacity are crossed out and the numbers denoting the flow
through a saturated arc are circled

As a sanity check, the input/output should match for each node

Flow-augmenting paths can be found without travelling backwards; this adds complexity to the
search and I find it easier not to use it



ADV  Appendix: Markov Chains

A Markov chain or chain is a network where every vertex has the same capacity (usually ), i.e. the
capacities of the arcs leaving the node add up to .

The network encodes a system; the vertices encode states of the system and the arcs joining states
represent the transition probabilities, i.e. the chance of moving from one given state to another at a
particular timestep.

A state  in a chain  is periodic with period  if it is only possible to return to  after a period
of time that is a multiple of . Otherwise,  is aperiodic.

The transition matrix of a chain is the adjacency matrix of its digraph.

Note that this must be explored to full depth in both cases: even if the sum of capacities leading
into a node is greater than its path to the sink, previous arcs even earlier in the network might
have a smaller capacity.

An irreducible chain is strongly connected, i.e. every state can (eventually) be reached from any
other state

A chain is absorbing if it has an inescapable state, i.e. a state that points back to itself with
probability .

A transient state is a state that will never be visited after some other state is reached.
Otherwise, the state is persistent.

So, vertex  is periodic iff every closed trail in the chain's associated digraph containing  has
a length that is a multiple of .
An ergodic state is both persistent an aperiodic

The eigenvectors of this matrix encode the probabilities of a given state the "current" state at
any timestep  for . This property can be linked to Kirchoff's Theorem/Matrix Tree
Theorem by considering the total set of possible timestep paths through a Markov chain as a tree
(more information).

https://en.wikipedia.org/wiki/Markov_chain_tree_theorem#:~:text=In%20the%20mathematical%20theory%20of,positive%20combination%20for%20each%20tree.


Chapter 7 - Matchings

Introduction to Matchings (7.1)

Matchings

A matching  in  is a subset  of the edges of  where each vertex in the spanning
subgraph  of  has a degree of at most .

The neighbourhood of  on graph  is the set of edges in  that have at least one
endpoint in , i.e. . So,

Hall's Marriage Theorem

Hall's Marriage Problem: Given bipartite graph  with bipartitions  and , does there exist a
one-to-one correspondence (i.e. edges) between the vertices of  and some subset  of ?

Contrapositive statement: if there exists a union of subsets  of size  that has less than 
elements, then a full matching cannot exist.

Often, this is introduced as  being a set of girls and  being a set of boys, where vertices are
adjacent across the bipartition of the girl and boy in question like each other. Then, the question

A vertex  is -saturated if it has degree  in  and -unsaturated if it has
degree  in 
A perfect matching saturates every vertex in .

Theorem 7.1.1: Hall's Marriage Theorem

A solution exists to Hall's Marriage Problem if and only if each subset  of size  (i.e.
) matches to at least  vertices in , i.e. every vertex in  is adjacent to at least 

vertices in .

Proof sketch: : clearly, if a solution exists, then each subset of  of size  matches at least
the  members of  given by the solution. If they didn't, there simply wouldn't be enough
elements in  for the matching to occur.  can be proven by strong induction on the size of

.

In this case, the largest different between the size union of some subsets and the number of
subsets in that union is the number of vertices that will not be matched. Additionally, the
vertices missing from any maximum matching will be in the union



becomes whether every girl can marry a boy she likes.

An alternate graph-theoretical statement of Hall's Marriage Theorem is as follows: Let  be bipartite
with bipartition . Then  has an -saturating matching if and only if for all subsets ,

, where  is the neighbourhood of .

Combinatorial (Set) Formulation

Suppose we have a set of girls  and boys . Each girl knows a
subset of the boys, i.e.  knows ,  knows , etc. Is it possible to "match" each girl with
a different boy, where the girl knows the boy in each "matching"?

For a finite, non-empty set  and family  where , a
transversal of  is a set of  distinct elements of  such that exactly one element is chosen for each
element .

ADV  Covers and König's Theorem

Covers

A cover  of graph  is a subset  such that every edge in  as at least one edge in ,
i.e. for all ,  (were ).

The version of this problem that lets gay people out of the closet is more computationally
difficult.

ADV  Corollary to Hall's Theorem

If  is a -regular bipartite graph, then  can be partitioned into  pairwise-disjoint perfect
matchings.

This can be proven as an exercise

Corollary 7.1.2

For sets  and  as described above,  has a traversal if and only if the union of any  subsets
contains at least  elements, i.e. iff  where 

Proof by this is just a thinly veiled restatement of Hall's marriage theorem

A minimum cover  in  is a cover of  such that no smaller cover exists.
The cover is the dual object of the matching

https://theory.stanford.edu/~jvondrak/CS369P/lec4.pdf
https://theory.stanford.edu/~jvondrak/CS369P/lec4.pdf


König's Theorem

Latin Squares

A Latin Rectangle  is an  matrix with integer entries  satisfying:

If ,  is also a Latin square

The proof above illustrates how adding additional rows to latin rectangles can be characterized as
finding a perfect matching in a bipartite graph.

Maximum Matchings (7.2)

ADV  König's Theorem

Let  be a bipartite graph with bipartition . Let  be a maximum matching and
 be a minimum cover. Then .

For non-bipartite , we have . If , then  is maximum and  is minimum.
However, for bipartite , there is no "gap".

The proof of König's theorem is found in the 249 notes.

1.  for all entries 
2. No two entries in the same row or column are equal

Note that the requirements for each  imply 

Theorem 7.1.3

If  is an  Latin rectangle with , then  can be extended into a Latin square by
adding  rows.

Intuitively, this is equivalent to being able to fill out a -ary sudoku puzzle with the first  rows
filled out in full.

Proof: We describe the bipartite graph where bipartition  corresponds to the set 
of columns of , and bipartition  corresponds to the numbers . A column and
number are connected iff the number is not present in the column. Thus, a perfect matching in

 corresponds to a new row that can be added to  such that  is still a latin rectangle. Since
 is already a latin rectangle, we know no number appears in a row or column more than once,

so by Hall's theorem, a perfect matching exists as long as . Thus, we can keep extending 
until , i.e. a Latin square is formed.



A partial matching  of bipartite graph  with bipartitions  is a complete matching between
some subset of vertices  and .  is a maximum matching if there is no way to construct a
matching in  with more edges.

If a bipartite graph  satisfies the constraints of Hall's Marriage problem, its maximum matching will
have  edges, i.e. will include every vertex in .

-augmenting Paths

An -alternating path is constructed in matching  by finding a path 
in  where edges ,  (i.e. edges of the form ) are not in  and edges ,  (i.e.
edges of the form ) are in .

An -augmenting path is an -alternating path that joins two vertices that have not yet been
matched in . If an -augmenting path  exists, we can improve the size of the matching by
replacing , which must be bigger than  (i.e. include the edges between those in ).

Finding -augmenting Paths

Generally, it's easiest to find paths that augment a single edge in the matching that connect
. However, it might not be possible to find

such cases; thus, longer -alternating paths must be considered

Theorem 7.2.1

A matching  on bipartite graph  is a maximal matching if and only if no -augmenting
paths exist.

Note: in this case,  might not be a maximum matching

Finding Augmenting Paths



Matching Algorithms

Various matching algorithms can be found on the Brilliant.org wiki.

Menger's Theorem (7.3)

A set of paths  in graph  is edge-disjoint if no paths in  share any edges, i.e.

.  is vertex-disjoint if no paths in  share any vertices, i.e. .

We define a -disconnecting set and a -separating set as any set of edges and vertices
(respectively) that disconnect vertices  and  in some graph .

Explanation of Menger's Theorem:

In bipartite graph  with matching , we find -augmenting paths with the following process:

1. Start at a vertex  that hasn't been matched yet
2. Construct the tree of all -alternating paths from  by first considering all the nodes  is

adjacent to, then their matchings, etc.

3. If we reach a vertex  that hasn't been matched yet, we find an -augmenting path;
if we can't find any such vertices,  is a maximal matching.

Note: this is the same algorithm for finding a maximum flow. Specifically, we are essentially
finding the maximum flow of a digraph where the source points to each vertex in the first
bipartition, each vertex in the second bipartition points to the sink, and each arc has the same
capacity.

Theorem 7.3.1: Menger's Theorem

For connected graph  with vertices 

1. The maximum number of edge-disjoint paths connecting  and  in  is equal to the
minimum number of edges in a -disconnecting set

2. The maximum number of vertex-disjoint paths connecting  and  in  is equal to the
minimum number of vertices in a -separating set

If  is a -disconnecting set, each edge-disjoint path from  to  must contain at least one edge
in  (otherwise a different path would exist). So,  is an upper bound on the number of edge-
disjoint paths from  to 

So, if  is a separating set of size  and we find  edge-disjoint paths from  to , this must be
the maximum number of edge-disjoint paths

https://brilliant.org/wiki/matching-algorithms/


ADV  Matching Polynomials

Definition

Let  denote the number of matchings of size  in graph . We define .

By corollary, we have  for the matching polynomial.

We can use a similar argument for vertex-disjoint paths and -separating sets

Theorem 7.3.2

Menger's Theorem implies Hall's Theorem

Proof: Assume Menger's theorem. We construct a graph  formed of a bipartite graph and two
additional nodes  and ; each vertex in bipartition  is adjacent to , and each in bipartition 
is adjacent to . Clearly, a perfect matching exists if there are  edge-disjoint paths in the
graph. Let  be a -separating set with  and . Since  is a separating set,
no vertex in  can be joined with a vertex in . So,  can only be joined to
vertices in . So, it follows by Hall's Marriage condition that . Thus,

. So, there are  edge-disjoint path, so a complete
matching exists

Matching Polynomial Definition

We define the matching polynomial 

There are historical reasons we don't just use the generating function 

Proposition

For graph , we have , where  means
edge  is removed from 

Proof: When counting matchings, we either use the edge  to find  extra matchings (second
term) or we don't use those vertices at all (first term)



Appendix - Prerequisite Knowledge

Enumeration (0.4)

In the context of this course, combinatorics (more specifically, enumeration) is concerned with the
counting of objects of a given property.

E.g. how many ways can we place  identical objects in  identical containers (stars and bars)

Multiplication Principle

If events  can occur  different ways respectively, then the events 
can occur simultaneously in  different ways

E.g. there are  ways to paint  walls if you have  colours of paint

Addition Principle

If events  can occur  different ways respectively and only one event can
happen, then the events  can occur in  different ways

Aside: the multiplication → AND  and addition → OR  similarities here indicate a boolean algebra
structure

Factorial

There are  ways to order  distinct objects

Combinations

There are  ways to select a subset of  objects from a set of  objects

Since we are dealing with sets, the objects are not ordered

Pigeonhole principle



If  objects are placed into  categories, at least one category must contain more than 
objects


